
Eur. Phys. J. D 40, 417–422 (2006)
DOI: 10.1140/epjd/e2006-00160-9 THE EUROPEAN

PHYSICAL JOURNAL D

Multiple Devil’s staircase in a discontinuous circle map

X.-M. Wang1,a, Z.-J. Fang2, and J.-F. Zhang1

1 School of Physics and Electric Information, NingXia University, Yinchuan 750021, P.R. China
2 School of Sciences, HeBei University of Technology, Tianjin 300130, P.R. China

Received 6 February 2006 / Received in final form 15 May 2006
Published online 12 July 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The multiple Devil’s staircase, which describes phase-locking behavior, is observed in a dis-
continuous nonlinear circle map. Phase-locked steps form many towers with similar structure in winding
number(W )-parameter(k) space. Each step belongs to a certain period-adding sequence that exists in a
smooth curve. The Collision modes that determine steps and the sequence of mode transformations create
a variety of tower structures and their particular characteristics. Numerical results suggest a scaling law
for the width of phase-locked steps in the period-adding (W = n/(n + i), n, i ∈ int) sequences, that is,
∆k(n) ∝ n−τ (τ > 0). And the study indicates that the multiple Devil’s staircase may be common in a
class of discontinuous circle maps.

PACS. 05.45.Ac Low-dimensional chaos

1 Introduction

Phase locking behavior is one of the basic characteristics of
nonlinear systems, and exists in many physical systems [1–
4]. The most famous is the one-dimensional map of the
circle onto itself, called “circle map”. In such a map the
winding number W (ε) is defined by the mean number of
rotations per iteration. It is locked onto every single ratio-
nal value to form a curve consisting of an infinite number
of steps when the control parameter ε varies. The curve is
called a Devil’s staircase. Its beautiful self-similar struc-
ture attracted much attention in 1980’s and therefore had
experimental or numerical proofs in quite different con-
texts. For instance, the typical examples are presented
in the references [5,6]. The Devil’s staircase shows two
basic features: the distribution of the phase-locked steps
demonstrates monotonicity and self-similarity that can be
fully described by the Farey tree rule. It means: if there
are two winding numbers, W = M/s and W ′ = M ′/s′
(M, M ′, s, s′ ∈ int), which are phase locked in ∆ε and
∆ε′, then the winding number of the largest phase locking
interval (or say phase-locked step) between ∆ε and ∆ε′
is W = (M + M ′)/(s + s′). In 1997, references [7,8] re-
ported the so-called multiple Devil’s staircase (MDS) ob-
served in a piecewise continuous linear circle map with two
discontinuous regions. This Devil’s staircase, in compar-
ison with the conventional Devil’s staircase (CDS), loses
monotonicity and self-similarity, and is composed of many
tower-like structures. Each tower includes two branches.
Some of these branches are CDSs. The top steps and
the bottom steps of all towers are located in two smooth
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curves, and the other points are confined between these
two curves.

In fact, all of the top steps of the towers be-
long to a period-adding sequence with winding number,
W = n/(n + 2) (n ∈ int), while the bottom steps form
another period-adding sequence with W of n/(n + 3) (n ∈
int). The widths of such steps obey a general scaling law,
ln |∆ε(n)| ∝ n, when n → ∞ [9]. Here ∆ε(n) denotes the
width of the step with W (n). As stated by Kaneko [10],
the reasons for the choice of the steps is that the sequence
can be observed since it has a large stable region and that
it reveals the global property of lockings through various
scalings. So the scaling law is basic for the phase-locking.

The authors of references [7,8] pointed out that the
mechanism inducing the MDS is the so-called multiple
collision modes. Each mode is expressed by a pair of dis-
continuous points, say the left and the right points, and
thus there are 4 modes in this system. A stable periodic
point collides the left point with the parameter value at
the left end point of a phase-locked step, while it collides
the right point with the parameter value at the right end
point of the step. References [11,12] stated that there are
in total 16 following ways, which represent the modes af-
ter each mode. They can serve as basic units that generate
the branches of the towers. And two of them can create
two CDS branches, the ascendant and descendant, to form
a full tower so that each period-adding sequence can find
their step on the branches, while the other ways can in-
duce the steps to form a fragmentary tower, and thus the
steps that should belong to some period-adding sequences
are absent. The former was named after the sonant struc-
ture and the latter the dissonant structure. Reference [12]
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also studied how the structure develops when the num-
ber of the discontinuous regions increases and suggested
a concept, dissonance of MDS, to quantitatively describe
this development.

In other words, the structure of the tower is deter-
mined by the way the mode transformations move from
one to another to produce steps one by one. So a given
sequence of mode transformations determines a particu-
lar tower structure. However, one may have the question:
whether the MDS is a special phenomenon in the afore-
mentioned system or a general feature of a class of sys-
tems? This may be important and interesting. The results
that will be presented in this article show that systems
do not necessarily have to be piecewise linear to generate
multiple collision modes and demonstrate MDSs, and the
most likely general sort of such systems is a circle map,
linear or nonlinear.

2 Discontinuous nonlinear circle map

It is well-known that the circle map is an very important
nonlinear model, which can exhibit many dynamical be-
haviors such as CDSs for describing phase-lockings, the
route to chaos via the transformation from quasiperiod-
icity and the corresponding scaling properties and so on.
And it can describe many physical systems, for instance,
current-driven Josephson junctions [6] and driven charge-
density-wave systems [13]. The typical circle map is

θn+1 = ϕ(θn) = θn + Ω − k

2π
sin(2πθn) [mod. 1]. (1)

We can obtain the studied general circle map by introduc-
ing the discontinuity to the above model, i.e.,

θn+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(θn) = θn + Ω − k

2π
sin(2πθn) + D01,

θn ∈ [0, θB],

ϕ2(θn) = θn + Ω − k

2π
sin(2πθn) − 0.5 − D02,

θn ∈ (θB, θE),

ϕ3(θn) = A ∗ θn + Ω − k

2π
sin(2πθn) − D03,

θn ∈ [θB, 1].
(2)

The locations of the branches of the function are shown
in Figure 1. ϕ3 multiplied by A of which value is less than
one is needed to form a channel, with the diagonal, for the
periodic orbits. The exit of the channel is denoted by the
point, θE(θE = ϕ−1(1)). G represents the implied discon-
tinuous point that divides the exit into two equal parts.
Its left and right limit definition is θG− = ϕ−1

2 (ϕ−1
1 (θB))

and θG+ = ϕ−2
2 (θC), respectively. And the coordinates

of the other points are determined by the equations,
ϕ2(ϕ2(θD1)) = 0, θB = θC = ϕ2(θ(D1)), D01 = 1−ϕ(θC),
ϕ3(θE) = 0.5. k denotes the strength of the driving force
in many systems, including this model, and is chosen as
the control parameter.

Fig. 1. A schematic drawing of map 1. The solid curves denote
the mapping function. The dashed lines show point G is the
second backward images of both the discontinuous points B
and C, and thus is a implicit discontinuous point to divide the
exit of the channel into two equal parts.

The border-collision bifurcation is one of the basic dy-
namic behaviors in discontinuous systems [14,15]. It indi-
cates, since the discontinuous points of the mapping func-
tions are non-differentiable, an orbit that visits (collides)
such points will lose its stability and be replaced by a new
stable one. In this case, it is very possible that the sys-
tem is locked in a series of periodic states as a parameter
is varied. These phase-locked regions manifest as a series
of phase-locked steps in the winding number-parameter
space. The winding number can be defined as the propor-
tion of the iteration number, N

′
c, inside the channel to the

total iteration number, N
′
t , of the trajectory. That is,

W = lim
N

′
t→∞

N
′
c

N
′
t

. (3)

For a periodic orbit, it also can, at first hand, be ex-
pressed as

W =
Nc

Nt
. (4)

The denotations of Nc and Nt are the same of N
′
c and N

′
t .

In this article we choose the constant parameters, Ω = 0.4.
As A takes different values the structures of the MDSs are
likely to be different. In order to get more understanding
on the detailed mechanism of the MDS, we first choose
A = 0.75 where the MDS demonstrates sonant structure,
and present the investigations in the next section, Sec-
tion 3. Some of the conclusions can be extended to the
dissonant structure, and will be presented in Section 4.
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Fig. 2. The sonant MDS obtained numerically by the defini-
tion (4) in map (1). The first 3000 iterations are dropped to
avoid transience.

3 Sonant structures of the multiple Devil’s
staircase

3.1 Features of the multiple Devil’s staircase

Figure 2 shows the sonant MDS obtained numerically by
equation (4). The contour of the MDS is, as a whole, sim-
ilar to those previously reported. The phase-locked steps
are regularly arranged in smooth curves, that is, theoreti-
cally speaking, there are infinity number of period-adding
sequences that confine the phase-lockings. The features of
the MDS can be summed up as followings: (1) it is com-
posed of many full towers with similar structure. (2) Each
tower includes two branches that are CDSs. (3) All the
phase-locked steps are confined by two smooth curves,
which contain the top and bottom steps, respectively.
(4) The total iteration number, Nt, of the trajectory cor-
responding to the top step is equal to that of the right
bottom step in the same tower. Reference [7] revealed that
there are 4 collision modes in the linear discontinuous cir-
cle map. The analytical result in reference [11] showed that
there are only 4 collision modes and obtained the condi-
tions, which are proved to be associated with the follow-
ing modes that correspond to the transformations between
the neighbor steps. Since the present observations only de-
scribed the sonant structure, we focus on the mechanisms
that cause the steps to be confined by two smooth curves,
the origin of the similar structure of the towers and the
scaling law for the period-adding sequences. In fact, the
analyses may easily be conducted in this case.

The very careful studies show that there are 4 collision
modes in the direction of the control parameter k increas-
ing. They can be described by the discontinuous points
of the map with which the periodic orbits will collide:
1(G−, E), 2(D, E), 3(G−, G+) and 4(D, G+). The trans-
formations of the collision modes are arranged in such a
perfect way that the tower structure repeats regularly as
follows: · · ·1(TS) → 2(DS)· · ·2 → 4(BS) → 3(AS)· · ·3 →
· · ·. Here the characters TS, BS, DS and AS represents the
top step, bottom step, the step in the descendant branch

and that in the ascendant branch, respectively. This ar-
ray indicates that mode 1 determines the top steps, mode
2 generates all of the steps in the descendant branches,
mode 3 generates all of steps in the ascendant branches
and mode 4 generates the bottom steps.

In order to more conveniently discuss the details of the
structure of the MDS, we use the definition of the winding
number suggested in references [5,6]. That is,

W (L, l; R, r) =
L + R

L + R + 2l + 3r
, (5)

where l is the number of re-injection via the left part of
the exit in a periodic trajectory, and r is that via the right
part of the exit. And 2 represents the iteration number
outside the channel of a periodic trajectory before each re-
injection via the left part of the exit, and 3 represents that
via the right part of the exit. L =

∑l
i=1 Li, R =

∑r
j=1 Rj ,

where Li denotes the iteration number inside the channel
after ith re-injection via the left part of the exit, and Rj

denotes that after jth re-injection via the right part of the
exit. Then a phase-locked step can be represented by four
characters, (L, l; R, r). (L, 1; 0, 0) denotes a TS, (0, 0; R, r)
denotes a BS and (L, l �= 0; R, r �= 0) denotes a AS or a
DS. Since one period-adding sequence differ from another
only in the value of l or r a period-adding sequence can
be denoted by two characters, (l : r). Based on this defi-
nition some important understandings or conclusions will
be obtained.

(1) All the TSs belong to the period-adding-1 se-
quence, (1 : 0), with winding number W = L/(L + 2).
All of the BSs belong to the period-adding-1 sequence,
(0 : 1), with winding number W = R/(R + 3). Some
ASs and DSs belong to the sequences period-adding-t1,
(l ≥ 1 : r ≥ 1), where t1 ≤ l, r. The period-adding of the
former can be performed only via L, and that of the lat-
ter can be performed only via R. The other ASs and DSs
belong to the sequences period-adding-t2, (l ≥ 1 : r ≥ 1),
and the period-adding can be performed via both of L
and R. Where t2 ≤ l + r. For instance, the middle steps
in the ascendant branches or in the descendant branches
respectively belong to two different period-adding-2 se-
quences. Here a middle step is the longest step except the
TS and the BS in a branch, and 2 is due to l + r = 2.
Therefore, all of the steps belong to one sequence should
located consequentially in one smooth curve.

(2) As shown by numerical investigations, the TS and
the right BS (bottom end step of the descendant branch)
of each tower correspond to two orbits with the same num-
ber of period-points, i.e., Nt = L + 2 = R + 3, so we
have L = R + 1 for the two steps in one tower. For an
arbitrary step determined by mode 2 in the descendant
branch, the winding number can be easily and reasonably
approximated as

W (L
′
, l; R

′
, r) .=

lL + rR

lL + rR + 2l + 3r
. (6)



420 The European Physical Journal D

From the right hand side of the equation, we can easily
obtain the following equations

lL + rR

lL + rR + 2l + 3r
=

L

L + 2
− r

(l + r)(L + 2)
(7)

and
lL + rR

lL + rR + 2l + 3r
=

R

R + 3
+

l

(l + r)(R + 3)
. (8)

For l, r ≥ 1, one may have, by comparing equations (7)
with (8), W (L, 1; 0, 0) > W (L

′
, l; R

′
, r) > W (0, 0; R, 1). It

indicates that all of the steps are confined between two
sequences composed of TSs and BSs, respectively.

(3) When the parameter varies in the direction of
k increasing, the sequence of the mode transformations
reads 1 → 2· · ·2 → 4 → 3· · ·3· · ·, the corresponding
phase-locked steps extend along the route: descending-
ascending-descending-ascending... to form a series of the
towers. These towers show the similar structures due to
the fact that each step in the tower belongs to the corre-
sponding period-adding sequence.

(4) For a certain sequence (the values of l and r are
fixed), one may have W (L

′
, l; R

′
, r) → W (L, 1; 0, 0) and

W (L
′
, l; R

′
, r) → W (0, 0; R, 1) when the parameter, k, in-

creases, and L, R → ∞ meanwhile. Therefor, there should
be the relation, W (0, 0; R, 1) = W (L, 1; 0, 0) → 1. It im-
plies that the steps in all of sequences will be compressed
in the W−axis, and finally lead to the overlapping of the
sequence (1 : 0) and (0 : 1), which agrees with what we
observed in Figure 2.

3.2 Scaling properties of the period-adding sequences

As it has already discussed above, in the direction of k in-
creasing, the steps distribute in the special ways to form
the period-adding sequences and show some special scal-
ing properties. In this article three important results for
sequences (1 : 0), (0 : 1) and (1 : 1) are presented.

For (1 : 0): the width of each step can be theoret-
ically obtained from the collision conditions at its end
parameter. According to collision conditions determined
by mode 1, that is, ϕ

(L)
3 ϕ1ϕ2(θG−)|k=ks

L
= θG− and

ϕ
(L)
3 ϕ1ϕ2(θE)|k=ke

L
= θE , we have ∆k(n) = ke

L − ks
L, n =

L + 2. The scaling property can be derived as n → ∞. It
is very hard to give this expression in analytic form due to
the nonlinearity of mapping function. So are the other se-
quences. However, the numerical results can be obtained
easily. As showed in Figure 3a, the linear fitted line in
ln ∆k − ln n space suggests a scaling law ∆k(n) ∝ nα,
α = −2.840± 0.006.

For (0 : 1): as shown by Figure 3b, a similar procedure
gives the scaling law, ∆k(n) ∝ nβ , β = −2.848 ± 0.014,
n = R + 3.

For (1 : 1): it actually includes two sequences. One is
composed of the middle steps in the ascendant branches,
and the other is composed of the middle steps in the de-
scendant branches. As showed in Figure 3c, the result in-
dicated by circles and their fitted line presents the scaling

(a)

(b)

(c)

Fig. 3. Numerical results about the scaling properties (a) for
sequence (1 : 0), (b) for sequence (0 : 1), and (c) for two
sequences (1 : 1). The details are presented in the text.

property, ∆k(n) ∝ nγA , γA = −4.318 ± 0.049, for as-
cendant branch (1 : 1) sequence. The similar result for
the descendant branch (1 : 1) sequence, ∆k(n) ∝ nγB ,
γB = −1.979 ± 0.022, is also showed in Figure 3c with
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(a)

(b)

Fig. 4. The dissonant MDSs computed with the parameter
value (a) A = 7.8 and (b) A = 7.9, respectively. Both the
insets of (a) and (b) are the partial magnifications. And the
first 3000 iterations are dropped to avoid transience for all
computations.

triangles. Please note here n = L+2+R+3 gives the pe-
riodic points of the corresponding periodic orbit. The sim-
ilar results obtained in the other sequences (l ≥ 1 : r ≥ 1)
convince us that the scaling law

∆k(n) ∝ n−τ , τ > 0, (9)

is common to all of the period-adding sequences in this
map.

4 Dissonant structures of the multiple
Devil’s staircase

As stated in the last section, the sequence of the mode
transformations determine the structure of the MDS. In
order to get a general picture of the MDS and its dissonant

structure, we present the main ideas here. In this discon-
tinuous circle map, there are only two possible following
modes after each mode: 1 → 2 or 4, 2 → 2 or 4, 3 → 3 or
1, 4 → 3 or 1, which are the basic units to generate the
branches of the tower, and thus their arrangements in dif-
ferent order will lead to different tower structure. Please
note that there is no preference for mode 1 and 4 to just
confine the steps (L, 1; 0, 0) or (0, 0; R, r). They can also
induce the steps (L, l ≥ 1; R, r ≥ 1) that can serve as the
top and bottom steps. So mode 1 and mode 4 can respec-
tively be classified into the single-exit one (W (L, 1; 0, 0)
or W (0, 0; R, 1) which indicates that the orbit escapes the
exit of the channel via only single part, the left or the
right) and the multiple-exit one (W (L, l ≥ 1; R, r ≥ 1)
which means the orbit escapes the exit via both of the
parts of the exit). The former can be denoted by the char-
acter s, and the latter can be denoted by the character m.
So we can use the words “mode 1s” or “mode 1m” and
“mode 4s” or “mode 4m” in our discussions. And there-
fore, there are 16 basic units. These results are proved
by our numerical simulations to be correct and in good
agreements with what presented in references [9,11] ob-
tained analytically and numerically. Thus the sequence
of the mode transformations by which the sonant tower
structure repeats perfectly in Figure 2 can be expressed
more accurately as: · · ·1s → 2· · ·2 → 4s → 3· · ·3· · ·.

As two typical examples of the dissonant tower struc-
tures, which may provide our readers with basic impres-
sions on the features of these structures, are showed in
Figure 4. Figure 4a shows a numerically obtained MDS
with A = 0.78. The value is only a little bit different from
those stated in Figure 2. The dissonant tower structure
is induced by the mode transformations · · ·1s → 4m →
1m → 2· · ·2 → 4m· · ·. The inset is the partial magnifica-
tion of Figure 4a, which shows many dissonant structure
units or the following modes. We list them in turn from
the left to the right:

1s(17, 1; 0, 0) → 4m(16, 1; 32, 2),
4m(16, 1; 32, 2) → 1m(16, 1; 17, 1),
1m(14, 1; 15, 1) → 2· · ·2 → 4m(14, 1; 17, 1),
1m(16, 1; 17, 1) → 2· · ·2 → 4m(16, 1; 129, 8).

And is followed by 4m(16, 1; 129, 8) → 1s(18, 1; 0, 0). Fig-
ure 4b shows another example with A = 0.79. The mode
transformations follow · · ·1s → 2· · ·2 → 4m → 3· · ·3 →
1m → 2· · ·2 → 4m → 1m → 4m → 3· · ·3· · ·. Similarly, we
only present the details of the inset. The structure units
are

1s(15, 1; 0, 0) → 2· · ·2 → 4m(14, 1; 28, 2),
4m(14, 1; 28, 2) → 3· · ·3 → 1m(14, 1; 15, 1),
1m(14, 1; 15, 1) → 2· · ·2 → 4m(14, 1; 43, 3),
4m(14, 1; 43, 3) → 1m(30, 2; 43, 3),
1m(30, 2; 43, 3) → 4m(30, 2; 57, 4).

The rest of the dissonant structure units can be obtained
by varying the parameter properly.
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Someone may wonder whether the width scaling prop-
erties, which dominates the distribution of the phase-
locked steps in sonant MDSs, apply to these dissonant
ones? The numerical investigations show that the dis-
tribution of the steps obeys the same scaling law that
the distribution of the steps in the sonant MDSs does,
∆k(n) ∝ n−τ (τ > 0), which has been presented in the
last section. For instance, as showed by the inset of Fig-
ure 4a, the step (16, 1; 32, 2) and the steps that are lo-
cated in the same positions of the similar towers belong
to the period-adding-3 sequence with W = n/(n + 9). The
step (16, 1; 129, 8) and the steps that are located in the
corresponding positions of the similar towers belong to
the period-adding-9 sequence with W = n/(n + 26). And
thus we can obtain the conclusion that the steps both in
the sonant and dissonant MDS are all confined by two
smooth curves on which the steps are induced by modes
1s or 1m, and 4s or 4m. Therefore, the similar conclu-
sions obtained in Section 3.1 are valid for the dissonant
MDS. However, one may note in the dissonant MDSs, the
Farey tree rule doesn’t work even for the units induced by
the following modes, 1 → 2· · ·2 → 4 or 4 → 3· · ·3 → 1,
which often are CDSs. In the inset of Figure 4a, for in-
stance, the step between (17, 1; 0, 0) (W = 17/19) and
(16, 1; 17, 1) (W = 33/38), which should have the winding
number W = 50/57 according to the Farey tree rule, is
absent here. As is well-known, this step should belong to
the CDS 1s(17, 1; 0, 0) → 2· · ·2 → 4m(16, 1; 17, 1). These
absences may be attributed to the increasing of the non-
linearity of the mapping function branch, ϕ3, in map (1)
as A increases. Because some periodic orbits, especially
the longer ones, have more periodic points to visit on the
segment where the slope is more than one, the orbits lose
stability, and can not appear.

5 Conclusions and discussions

In this article we present some analytic and numerical in-
vestigations on the feature of the multiple Devil’s staircase
in a discontinuous nonlinear circle map. There are 4 col-
lision modes and 16 possible following modes. 14 of them
can induce dissonant tower structures. A given sequence
of mode transformations, the regular repetitions of some
modes, generate particular and similar towers, and also
determine the period-adding sequences in the sonant and
dissonant MDSs. These are the same as those that were
observed in the previous studied linear maps. However,
the smooth curves of the sequences have more compli-
cated function forms other than that (W ∝ −1/ln(ε), ε is
the control parameter) in the linear maps. They can be
fitted to some polynomials, which may be induced by the
nonlinearity of the function.

The width of the phase-locked steps in the period-
adding sequences obeys the scaling law, ∆k(n) ∝ n−τ

(τ > 0), which are common to all of the sequences. And it
differs from that in the prevenient studies ln |∆ε(n)| ∝ n.
This difference may be also induced by nonlinear of the
mapping function. To sum up, the common characteris-
tics of the multiple Devil’s staircases in different systems
should be attribute to the same discontinuity of a class
of circle maps, while the different dynamical behaviors
among these maps can naturally be owed to the differ-
ences in the mapping functions.

Our investigations that made in the similarly con-
structed nonlinear circle maps with three (see the discus-
sions in Ref. [12]) and four discontinuous regions support
the conclusion: the MDS and its geometric features may
be a common manifestation in a class of discontinuous
circle maps whether they are nonlinear or linear.
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